

Welcome to wsipipe’s documentation!

Contents:

	Getting started
	wsipipe

	Installation

	Usage

	Tutorial

	wsipipe
	wsipipe package

	Other information
	Contributing

	Credits

	History

Indices and tables

	Index

	Module Index

	Search Page

Getting started

Contents:

	wsipipe
	Features

	Credits

	Installation
	Stable release

	From sources

	Openslide

	Usage

	Tutorial
	Specifying slide and annotation information

	Specifying how to load a dataset

	Viewing a slide

	Viewing an annotation

	Applying background subtraction

	Creating a patchset for a slide

	Creating patchsets for a dataset

	Saving and loading patchsets

	Combining patchsets

	Sampling patchsets

	Creating patches

wsipipe

[image: _images/wsipipe.svg]
 [https://pypi.python.org/pypi/wsipipe][image: _images/wsipipe1.svg]
 [https://travis-ci.com/davemor/wsipipe][image: Documentation Status]
 [https://wsipipe.readthedocs.io/en/latest/?badge=latest][image: _images/zenodo.7060584.svg]
 [https://doi.org/10.5281/zenodo.7060584]A set of tools for processing pathology whole slide images for deep learning.

	Free software: MIT license

	Documentation: https://wsipipe.readthedocs.io.

Features

	TODO

Credits

This package was created with Cookiecutter [https://github.com/audreyr/cookiecutter] and the audreyr/cookiecutter-pypackage [https://github.com/audreyr/cookiecutter-pypackage] project template.

Installation

Stable release

To install wsipipe, run this command in your terminal:

$ pip install wsipipe

This is the preferred method to install wsipipe, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for wsipipe can be downloaded from the Github repo [https://github.com/StAndrewsMedTech/wsipipe].

You can either clone the public repository:

$ git clone git://github.com/StAndrewsMedTech/wsipipe

Or download the tarball [https://github.com/StAndrewsMedTech/wsipipe/tarball/master]:

$ curl -OJL https://github.com/StAndrewsMedTech/wsipipe/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Openslide

Wsipipe requires openslide this cannot be installed by pip.
Please follow the instructions on https://openslide.org/api/python/ for your operating system.

for example on ubuntu:

apt install -y openslide-tools

Usage

To use wsipipe in a project:

import wsipipe

Tutorial

	Some basics to get you started using wsipipe. Wsipipe is structured around:
	
	datasets, which contain the details of where files are stored.

	patchsets, which contain details of where patches are within an WSI.

Specifying slide and annotation information

To get started we need to define a set of data we are going to use.
A dataset is stored in a pandas DataFrame.
Each row contains the information for a single slide.
The dataframe should have four columns, slide, annotation, label, and tags.

	slide, contains the path the WSI.

	annotation, contains a path to an annotation file.

	label, contains a slide level label.

	tags, can contain any other information you want to store about the slide.

You can create these dataframes or read from disk.
WSIpipe also has some datasets predefined, for example camelyon16.

If you have downloaded the camelyon16 data from and stored it in a local folder:
https://camelyon17.grand-challenge.org/Data/ .
It is assumed the local folder (path_to_local_folder) is structured in the dame way as the Camleyon16 google drive,
that is it should contain two folders named training and testing.

The code to create the wsipipe dataset dataframe is:

from wsipipe.datasets import camelyon16

train_dset = camelyon16.training(cam16_path = path_to_local_folder)

We only want to use a few slides for the examples in this tutorial so we can cut down the size using sample_dataset.
For example if we want to randomly select 2 slides of each label category from the dataset:

from wsipipe.datasets.dataset_utils import sample_dataset

small_train_dset = sample_dataset(train_dset, 2)

As the dataset is just a pandas dataframe we can access information for an individual slide by specifying the row.:

row = small_train_dset.iloc[0]

Specifying how to load a dataset

Our dataset has now stored the location of the WSI, annotations and other information.
Now we need to specify how these files are to be loaded as not all WSI formats and annotations
can be loaded using the same libraries.
This is done using dataset loader classes, each of which specifies how to load annotations and slides,
as well as the allowable slide labels.
A selection of slide and annotation loaders are included in wsipipe.
The Camleyon16 dataset loader class is specifed as::

from wsipipe.load.datasets.camelyon16 import Camelyon16Loader

dset_loader = Camelyon16Loader()

Viewing a slide

Now we have defined where the WSI files are and how to load them, we can open a slide and return
the whole slide at a given level in the image pyramid as a numpy array. Depending on the size of
the WSI it may not be possible to do this at the lowest levels (highest magnification)
of the image pyramid due to lack of memory. In the example we are extracting the thumbnail at
level 5.:

with dset_loader.load_slide(row.slide) as slide:
 thumb = slide.get_thumbnail(5)

This code returns a numpy array, if you want to for example display it as a PIL image in a jupyter notebook.:

from wsipipe.utils import np_to_pil

np_to_pil(thumb)

Viewing an annotation

We can also read and view the annotations, here we render them at level 5.
The annotations for camleyon are read in as labels 1 or 2,
in the code below they are mulitplied by 100 to make them visible when displayed.:

from wsipipe.load.annotations import visualise_annotations

labelled_image = visualise_annotations(
 row.annotation,
 row.slide,
 dset_loader,
 5,
 row.label
)
np_to_pil(labelled_image*100)

Applying background subtraction

Often large parts of WSI are background that contain nothing of interest,
therefore we want to split the background from the tissue so we know which are the areas of interest on the slide.
There different types of tissue detectors specfied in wsipipe. Here we use a basic Greyscale version.
Firstly we specify our tissue detector and define the parameters, then we apply it to a thumbnail of the WSI.
This returns a binary mask where True/1/white is tissue and False/0/black is background.:

from wsipipe.preprocess.tissue_detection import TissueDetectorGreyScale

tisdet = TissueDetectorGreyScale(grey_level=0.85)
tissmask = tisdet(thumb)
np_to_pil(tissmask)

We can also apply filters or morphological operations as part of the tissue detection.:

from wsipipe.preprocess.tissue_detection import SimpleClosingTransform, SimpleOpeningTransform, GaussianBlur

prefilt = GaussianBlur(sigma=2)
morph = [SimpleOpeningTransform(), SimpleClosingTransform()]
tisdet = TissueDetectorGreyScale(
 grey_level=0.75,
 morph_transform = morph,
 pre_filter = prefilt
)
tissmask = tisdet(thumb)
np_to_pil(tissmask)

We can also visualise the mask overlaid on the thumbnail.:

from wsipipe.preprocess.tissue_detection import visualise_tissue_detection_for_slide

visualise_tissue_detection_for_slide(row.slide, dset_loader, 5, tisdet)

Creating a patchset for a slide

Next we define the location of patches to extract from the slide, which we refer to as a patchset.
Here we specify we want to create 256 pixels patches on a regular grid with stride 256 pixels.
The patches are extracted at level 0. This will be calculated based on thumbnails and annotations
rendered at level 5.:

from wsipipe.preprocess.patching import GridPatchFinder, make_patchset_for_slide

patchfinder = GridPatchFinder(patch_level=1, patch_size=512, stride=512, labels_level=5)
pset = make_patchset_for_slide(row.slide, row.annotation, dset_loader, tisdet, patchfinder)

The patchset is datafrom with the top left position and label for each patch, plus a settings object
which stores information which is used for multiple patches such as the patch size and slide path.
You can combine multiple settings within one patchset, so the dataframe also records which setting to apply to a patch.
We can then use the patchset to visualise the patches overlaid on the slide.:

from wsipipe.preprocess.patching import visualise_patches_on_slide

visualise_patches_on_slide(pset, vis_level = 5)

There is also a random patch finder available, which extracts a given number of patches at random locations
within the tissue area.

Creating patchsets for a dataset

We can also create patchsets for the whole dataset. This simply returns a list of patchsets for each slide in the dataset.:

from wsipipe.preprocess.patching import make_patchsets_for_dataset

psets_for_dset = make_patchsets_for_dataset(
 dataset = small_train_dset,
 loader = dset_loader,
 tissue_detector = tisdet,
 patch_finder = patchfinder
)

Saving and loading patchsets

For large datasets, this can take a long time and a problem in one file can cause this not to complete. It is frustrating to
have to remake the patchsets for all the other slides. Therefore there is also a function to save each patchset individually
as it makes them. When the function is rerun it then checks if the patchsets already exists, if so it skips creating it.
This function saves each patchset in a separate subdirectory of the output directory.:

from wsipipe.preprocess.patching import make_and_save_patchsets_for_dataset

psets_for_dset = make_and_save_patchsets_for_dataset(
 dataset = small_train_dset,
 loader = dset_loader,
 tissue_detector = tisdet,
 patch_finder = patchfinder,
 output_dir = path_to_pset_folder
)

You can also load datasets created with the same folder structure.:

from wsipipe.preprocess.patching import load_patchsets_from_directory

psets_for_dset = load_patchsets_from_directory(patchsets_dir = path_to_pset_folder)

Combining patchsets

You can combine multiple patchsets into one big patchset, for example to combine all the patchsets in a dataset.:

from wsipipe.preprocess.patching import combine

all_patches_in_dset = combine(psets_for_dset)

Sampling patchsets

You can sample patches from a patchset, there are various samplers available that can be used to create
balanced sets, weighted sets etc. The balanced sample will sample num_samples without replacement from each category.
If there are fewer than num_samples of one category it will sample the number of samples of the smallest
category. If the smallest category is less than floor_samples, it will sample floor_samples
from the other categories and all the samples from the smallest category. The sampler returns a patchset.:

from wsipipe.preprocess.sample import balanced_sample

sampled_patches = balanced_sample(
 patches = all_patches_in_dset,
 num_samples = 500,
 floor_samples = 100
)

Creating patches

Once you have a patchset (an individual slide, a combined patchset or a sampled patchset)
it is simple to create the patches from it.:

sampled_patches.export_patches(path_to_folder_for_patches)

You now have your patches ready for training the deep learning model of your choice.

wsipipe

	wsipipe package
	wsipipe.datasets package
	camelyon16 module
	testing()

	training()

	stripai module
	convert_to_pyramids()

	training()

	dataset_utils module
	sample_dataset()

	wsipipe.load package
	Subpackages
	wsipipe.load.annotations package

	wsipipe.load.datasets package

	wsipipe.load.slides package

	wsipipe.preprocess package
	Subpackages
	wsipipe.preprocess.patching package

	wsipipe.preprocess.sample package

	wsipipe.preprocess.tissue_detection package

	wsipipe.utils package
	convert module
	invert()

	np_to_pil()

	pil_to_np()

	remove_item_from_dict()

	to_frame_with_locations()

	filters module
	pool2d()

	geometry module
	Address

	Point

	PointF

	Shape

	Size

wsipipe package

	wsipipe.datasets package

	wsipipe.load package

	wsipipe.preprocess package

	wsipipe.utils package

wsipipe.datasets package

Datasets contain information on sets of data, e.g file locations, number of slides, labels etc
A dataset is a dataframe with columns slide, annotation, label and tags

	slide contains WSI path

	annotation contains path to annotation file or slide label

	label contains slide level labels

	tags is any other infomation about the slide (multiple pieces of data are separated by semi colons).

camelyon16 module

	This module creates the dataframe for the camelyon 16 dataset with the follwing columns:
	
	The slide column stores the paths on disk of the whole slide images.

	The annotation column records a path to the annotation files.

	The label column is the slide level label.

	The tags column is blank for camelyon 16.

This assumes there is a folder on disk structured the same as downloading
from the camelyon grand challenge Camelyon 16 google drive:
https://camelyon17.grand-challenge.org/Data/

	
testing(cam16_path=PosixPath('data/camelyon16'), project_root=None)

	Create Camleyon 16 testing dataset

This function goes through the input directories for the testing slides,
and matches up the annotations and slides.
It creates a dataframe with slide path with matching annotation path, and slide label.
There is an empty tags column that is not used for this dataset

	Parameters:

	
	cam16_path (Path, optional) – a path relative to the project root that is the location
of the Camelyon 16 data. Defaults to data/camelyon16.

	project_root (Optional[Path]) –

	Returns:

	A dataframe with columns slide, annotation, label and tags

	Return type:

	df (pd.DataFrame)

	
training(cam16_path=PosixPath('data/camelyon16'), project_root=None)

	Create Camleyon 16 training dataset

This function goes through the input directories for the training slides,
and matches up the annotations and slides.
It creates a dataframe with slide path with matching annotation path, and slide label.
There is an empty tags column that is not used for this dataset

	Parameters:

	
	cam16_path (Path, optional) – a path relative to the project root that is the location
of the Camelyon 16 data. Defaults to data/camelyon16.

	project_root (Optional[Path]) –

	Returns:

	A dataframe with columns slide, annotation, label and tags

	Return type:

	df (pd.DataFrame)

stripai module

	This module creates the dataframe for the STRIP AI dataset with the following columns:
	
	The slide column stores the paths on disk of the whole slide images

	The annotation column records a string with the slide label

	The label column is the slide level label

	The tags column contains the center and patient for each slide

This assumes there is a folder on disk structured the same as downloading
from the kaggle website
https://www.kaggle.com/competitions/mayo-clinic-strip-ai/data

	
convert_to_pyramids(data_root=PosixPath('data/mayo-clinic-strip-ai'), out_root=PosixPath('experiments/mayo_pyramids'), project_root=None)

	Create pyramids for whole slide images

The whole slide images as downloaded only contain data at level 0,
no other levels are present. This can make it slow to access the slides.
This function will run over all the slides in the the dataset and write
out copies that contain a pyramid of levels.
Files are written to folder experiments/pyramids/

	Parameters:

	
	mayo_path (Path, optional) – a path relative to the project root that is the location
of the strip ai data. Defaults to data/mayo-clinic-strip-ai.

	data_root (Path) –

	out_root (Path) –

	project_root (Optional[Path]) –

	
training(data_root=PosixPath('data/mayo-clinic-strip-ai'), project_root=None)

	Create Strip AI training dataset

This function goes through the input directories for the training slides,
and matches up the slide paths with infomation in the csv
It creates a dataframe with slide path with matching slide label stored for both label and annotation.
The tags column stores the patient id and center id.

	Parameters:

	
	mayo_path (Path, optional) – a path relative to the project root that is the location
of the stripai data. Defaults to data/mayo-clinic-strip-ai.

	data_root (Path) –

	project_root (Optional[Path]) –

	Returns:

	A dataframe with columns slide, annotation, label and tags

	Return type:

	df (pd.DataFrame)

dataset_utils module

	
sample_dataset(df, samples_per_class)

	Create a subset of a dataset dataframe
This function will create a smaller dataframe that only includes
n slides per class. This can be used to create smaller datasets for
example for debugging pipelines

	Parameters:

	
	df (pd.DataFrame) – A dataframe containing a column called label

	samples_per_class (str) – The number of slides per class to return

	Returns:

	
	A copy of the dataframe with samples_per_class rows
	for each label

	Return type:

	df (pd.DataFrame)

wsipipe.load package

Contains functionality to load slides, annotations or entire datasets

Subpackages

	wsipipe.load.annotations package

	wsipipe.load.datasets package

	wsipipe.load.slides package

wsipipe.load.annotations package

All annotations are loaded in the generic annotation format.
Individual modules convert specific annotation types to the generic

annotation module

Parent classes that contain functionality for reading annotations.
These are used to render different types of annotations into a common format

	
class Annotation(name, annotation_type, label, vertices)

	Bases: object

Class for a single annotation.

There can be multiple annotations on a slide

	Parameters:

	
	name (str) – Name of the annotation.

	type (str) – One of Dot, Polygon, Spline or Rectangle

	label (str) – What label should be given to the annotation

	vertices (List[PointF]) – A list of vertices, each of which is an PointF object,
a named tuple (x, y) of floats.

	annotation_type (str) –

	
draw(image, labels, factor)

	Renders the annotation into the image.

	Parameters:

	
	image (np.array) – Array to write the annotations into, must have dtype float.

	labels (Dict[str, int]) – The value to write into the image for each type of label.

	factor (float) – How much to scale (by divison) each vertex by.

	
class AnnotationSet(annotations, labels, labels_order, fill_label)

	Bases: object

Class for all annotations on a slide.

	Parameters:

	
	annotations (List[Annotation]) – A list of all Annotations on a slide

	labels (Dict[str, int]) – A dictionary where the keys are the names of labels,
with the integer values with which the string should be replaced.

	labels_order (List[str]) – An order the labels should be plotted in.
Where annotations overlap they will be drawn
in this order, so the final label will be on top

	fill_label (str) – The label given to any unannotated areas.

	
render(shape, factor)

	Creates a labelled image containing annotations

This creates an array of size = shape, that is factor times smaller
than the level at which the annotation vertexes are specified.
Annotations vertex positions are assumed to be specified at level 0,
and therefore for many WSI a np.array of the same size as level 0
would not fit in memory. Therefore one factor times smaller is created.

	Parameters:

	
	shape (Shape) – size of numpy array to create

	factor (float) – How much to scale (by divison) each vertex by.

	Return type:

	numpy.array

	
visualise_annotations(annot_path, slide_path, loader, level, slide_label)

	Creates a image render of the annotations of a slide

Converts annotations from level zero to the specified level.
Requires slide path to find the correct dimensions of the output image.
Returns a numpy array

	Parameters:

	
	annot_path (Path) – A path to the annotation file

	slide_path (Path) – A path to the WSI file

	loader – The loader to use for slides and annots

	level (int) – the level to create the numpy array

	slide_label (str) –

	Returns:

	An array the same size as the WSI at level
with the annotation labels plotted in it.

	Return type:

	labels_image (np.array)

asapxml module

Functions to load annotations stored in asapxml formats
and convert to Annotation class formats

	
annotation_from_tag(tag, group_labels)

	Convert an asapxml element to annotation format.

	Parameters:

	
	tag (Element) – An element from the xml Element tree

	group_labels (Dict[str, str]) – A dictionary of group labels that convert
values stored in xml PartOfGroup to required label.
e.g {“Tumor”: “tumor”, “Metastasis”: “tumor”, “Normal”: “normal”, “Tissue”: “normal”}

	Return type:

	Annotation

	
load_annotations_asapxml(xml_file_path, group_labels)

	Read xml file and create annotations

	Parameters:

	
	xml_file_path (Path) – PAth to xml file to read

	group_labels (Dict[str, str]) – A dictionary of group labels that convert
values stored in xml PartOfGroup (keys) to required label (values).
e.g {“Tumor”: “tumor”, “Metastasis”: “tumor”, “Normal”: “normal”, “Tissue”: “normal”}

	Return type:

	List[Annotation]

wsipipe.load.datasets package

loader module

camelyon16 module

stripai module

registry module

wsipipe.load.slides package

slide module

SlideBase is a parent class that contains functionality for reading slides.
This is used to render different types of slides into a common format

	
class SlideBase

	Bases: object

Generic base class for slide loaders.

	
open()

	opens a slide

	Return type:

	None

	
close()

	closes a slide

	Return type:

	None

	
path()

	returns the filepath to the slide

	
dimensions()

	returns a list of the slide dimensions in pixels

	
for each level present in the WSI pyramid

	

	
read_region()

	returns a specified region of the slide as a PIL image

	Parameters:

	region (Region) –

	Return type:

	Image

	
read_regions()

	returns multiple regions as a list of PIL images

	Parameters:

	regions (List[Region]) –

	Return type:

	List[Image]

	
get_thumbnail()

	returns the whole of the slide at a given level

	Parameters:

	level (int) –

	Return type:

	numpy.array

	
in the WSI pyramid as numpy array. This can run out of memory if

	

	
too low a level in the pyramid is selected

	

	
abstract close()

	
	Return type:

	None

	
abstract property dimensions: List[Size]

	Gets slide dimensions in pixels for all levels in pyramid
:returns: A list of sizes
:rtype: (List[Size])

	
get_thumbnail(level)

	Get thumbnail of whole slide downsized to a level in the pyramid

	Parameters:

	level (int) – Level at which to return thumbnail

	Returns:

	thumbnail as an RGB numpy array

	Return type:

	im (np.array)

	
abstract open()

	
	Return type:

	None

	
abstract property path: Path

	

	
abstract read_region(region)

	Read a region from a WSI

Returns a PIL image for the region

	Parameters:

	region (Region) – A region of the image

	Returns:

	A PIL Image of the specified region

	Return type:

	image (Image)

	
abstract read_regions(regions)

	Read multiple regions of a WSI

Returns a PIL image for each region

	Parameters:

	regions (List[Region]) – List of regions

	Returns:

	List of Images

	Return type:

	images (List[Image])

openslide module

	
class OSSlide(path)

	Bases: SlideBase

Read slides to generic format using the openslide package.
For example, to open OMETiff WSIs.

	Parameters:

	path (Path) –

	
check_level(region)

	Checks if level specified in region exists in pyramid
:param region: A Region to check
:type region: Region

	Returns:

	True if level in region exists in pyramid

	Return type:

	(bool)

	Parameters:

	region (Region) –

	
close()

	
	Return type:

	None

	
convert_region(region)

	Creates a PIL image of a region by downsampling from lower level
:param region: A Region to create
:type region: Region

	Returns:

	A downsampled PIL Image

	Return type:

	image (Image)

	Parameters:

	region (Region) –

	
property dimensions: List[Size]

	Gets slide dimensions in pixels for all levels in pyramid

If fewer than 10 levels exist in the pyramid it calculates the
extra sizes and adds them to the list

	Returns:

	A list of sizes

	Return type:

	sizelist (List[Size])

	
open()

	
	Return type:

	None

	
property path: Path

	

	
read_region(region)

	Read a region from a WSI

Checks if the specified level for the region exists in the pyramid.
If not reads the region from the highest level that exists and downscales it

	Parameters:

	region (Region) – A region of the image

	Returns:

	A PIL Image of the specified region

	Return type:

	image (Image)

	
read_regions(regions)

	Read multiple regions of a WSI

Returns a PIL image for each region

	Parameters:

	regions (List[Region]) – List of regions

	Returns:

	List of Images

	Return type:

	images (List[Image])

region module

	
class Region(level, location, size)

	Bases: tuple

Class for a Region of a whole slide image
:param level: Level to extract the region
:type level: int
:param location: x y tuple giving location of top left of region at that level
:type location: Point
:param size: width and height tuple giving size of region at that level
:type size: Size

	Parameters:

	
	level (int) –

	location (Point) –

	size (Size) –

	
as_values()

	Splits out location and size into separate values

	Return type:

	Tuple[int, int, int, int, int]

	
property level

	Alias for field number 0

	
property location

	Alias for field number 1

	
classmethod make(x, y, size, level)

	An alternate construction method for square region

Assumes a square region of width and height equal to size

	Parameters:

	
	x (int) – the pixel location of left of image at level

	y (int) – the pixel location of top of image at level

	size (int) – size of square region

	level (int) – Level to extract the region

	
property size

	Alias for field number 2

wsipipe.preprocess package

Contains functionality to split slides into patches,
sample patches and apply tissue detection.

Subpackages

	wsipipe.preprocess.patching package

	wsipipe.preprocess.sample package

	wsipipe.preprocess.tissue_detection package

wsipipe.preprocess.patching package

patch_finder module

Patch Finders describe how patches are created for a slide.

They work on a labelled image, that is a numpy array with
integers giving the annotation category for each pixel.

The input labelled image can be at any level of the pyramid
for which a numpy array for that size can fit into memory.

A patch finder will create a dataframe with columns x, y, label
where x and y represents the top left corner of the patch and
label is the label applied to the patch.

	
class GridPatchFinder(labels_level, patch_level, patch_size, stride, border=0, jitter=0, remove_background=True, pool_mode='max')

	Bases: PatchFinder

	Parameters:

	
	labels_level (int) –

	patch_level (int) –

	patch_size (int) –

	stride (int) –

	border (int) –

	jitter (int) –

	remove_background (bool) –

	pool_mode (str) –

	
labels_level()

	

	
class PatchFinder

	Bases: object

Generic patch finder class

	Parameters:

	
	labels_image (np.array) – The whole slide image represented as a 2d numpy array,
the classification is given by an integer. For example an image such as those
output by AnnotationSet.render

	slide_shape (Size) – The size of the WSI at the level at which the labels are rendered.
This may be different to the labels image shape, as the labels image may not
include blank parts of the slide in the bottom right.

	
abstract property labels_level

	

	
class RandomPatchFinder(labels_level, patch_level, patch_size, border=0, npatches=1000, pool_mode='mode')

	Bases: PatchFinder

	Parameters:

	
	labels_level (int) –

	patch_level (int) –

	patch_size (int) –

	border (int) –

	npatches (int) –

	pool_mode (str) –

	
labels_level()

	

patchset module

patchset_utils module

wsipipe.preprocess.sample package

sampler module

wsipipe.preprocess.tissue_detection package

tissue_detector module

Tissue Detectors create a 2d array of booleans indicating if that area contains
tissue or not.

The input is an RGB numpy array representing the slide.
Usually a downsampled thumbnail image as whole slide images as level 0
are often too large to store in memory.

	
class TissueDetector(pre_filter=<wsipipe.preprocess.tissue_detection.filters.NullBlur object>, morph_transform=<wsipipe.preprocess.tissue_detection.morphology_transforms.NullTransform object>)

	Bases: object

Generic tissue detector class

	Parameters:

	
	pre_filter (Union[PreFilter, List[PreFilter]]) – Any filters or transforms that are to be applied before the tissue detection.
Can be lists of filters or individual filters. Defaults to NullBlur

	() (morph_transform) – Any filters or transforms that are to be applied after the tissue detection.
Can be lists of transforms or individual transforms. Defaults to NullTransform

	morph_transform (Union[MorphologyTransform, List[MorphologyTransform]]) –

	Returns:

	An ndarray of booleans with the same dimensions as the input image
True means foreground, False means background

	
class TissueDetectorAll(pre_filter=<wsipipe.preprocess.tissue_detection.filters.NullBlur object>, morph_transform=<wsipipe.preprocess.tissue_detection.morphology_transforms.NullTransform object>)

	Bases: TissueDetector

	Parameters:

	
	pre_filter (Union[PreFilter, List[PreFilter]]) –

	morph_transform (Union[MorphologyTransform, List[MorphologyTransform]]) –

	
class TissueDetectorGreyScale(pre_filter=<wsipipe.preprocess.tissue_detection.filters.NullBlur object>, morph_transform=<wsipipe.preprocess.tissue_detection.morphology_transforms.NullTransform object>, grey_level=0.8)

	Bases: TissueDetector

	Parameters:

	grey_level (float) –

	
class TissueDetectorOTSU(pre_filter=<wsipipe.preprocess.tissue_detection.filters.NullBlur object>, morph_transform=<wsipipe.preprocess.tissue_detection.morphology_transforms.NullTransform object>)

	Bases: TissueDetector

	Parameters:

	
	pre_filter (Union[PreFilter, List[PreFilter]]) –

	morph_transform (Union[MorphologyTransform, List[MorphologyTransform]]) –

filters module

Filters to apply to images as part of tissue detection

	
class GaussianBlur(sigma)

	Bases: PreFilter

Applies a Gaussian filter with sigma value

	Parameters:

	sigma (int) –

	
class MedianBlur(filter_size)

	Bases: PreFilter

Applies a median filter of size filter_size

	Parameters:

	filter_size (int) –

	
class NullBlur

	Bases: PreFilter

Null filter does nothing

	
class PreFilter

	Bases: object

Generic class of filter

morphology_transforms module

Transforms can be applied to binary or labelled images, for example to fill holes

	
class FillHolesTransform(level_in, hole_size_to_fill=250, level_zero_size=0.25)

	Bases: MorphologyTransform

Fills holes in an image, using segmentation
Segments smaller than hole_size_to_fill in area are filled.
Size of a pixel at the image level is 2**level_in * level zero size
Hole_size_to_fill (an area) is converted to number of pixels by
dividing by the size of rpixel at image level.

Input image is a binary image
Image is segmented using scikit image regionprops.
If the area of the region is less than the specified hole size
and the mean intensity of the region is less than 0.1 (out of 1)
then the region is filled by converting to True/1/white

Args:
level_in: level of input image
hole_size_to_fill: dark areas smaller in size than this will be filled
level_zero_size: size of a pixel at level zero

	Parameters:

	
	level_in (int) –

	hole_size_to_fill (float) –

	level_zero_size (float) –

	
class MaxPoolTransform(level_in, level_out)

	Bases: MorphologyTransform

Applies max pool
Takes a big input image and returns a smaller output image.
Every pixel in the output image represents 2**(level_out - level_in) pixels in input image.
The pixel value for the output image is the maximum of the pixels in that region of the input image.

Args:
level_in: Initial level of image
level_out: Output level of image (must be a smaller image level_out > level_in)

	Parameters:

	
	level_in (int) –

	level_out (int) –

	
class MorphologyTransform

	Bases: object

	
class NullTransform

	Bases: MorphologyTransform

	
class SimpleClosingTransform

	Bases: MorphologyTransform

	
class SimpleOpeningTransform

	Bases: MorphologyTransform

	
class SizedClosingTransform(level_in, expand_size=50, level_zero_size=0.25)

	Bases: MorphologyTransform

	Parameters:

	
	level_in (int) –

	expand_size (float) –

	level_zero_size (float) –

visualise module

wsipipe.utils package

Utility functions that are used throughout the package.

convert module

Functionality for converting between formats.

	
invert(d)

	
	Parameters:

	d (Dict) –

	Return type:

	Dict

	
np_to_pil(arr)

	Convert a Numpy array into a PIL image

	Parameters:

	arr (numpy.ndarray) – a Numpy array

	Returns:

	the PIL image

	Return type:

	Image

	
pil_to_np(image)

	Convert a PIL image into a Numpy array

	Parameters:

	image (Image) – the PIL image

	Returns:

	a Numpy array

	Return type:

	numpy.ndarray

	
remove_item_from_dict(dict_in, key_to_remove)

	remove one key value pair from a dictionary by specifying the key to remove
:param dict_in: dictionary to remove an item from
:param key_to_remove: the key of the key value pair to be removed

	Returns:

	the dictionary without the specified item

	Parameters:

	
	dict_in (dict) –

	key_to_remove (str) –

	Return type:

	dict

	
to_frame_with_locations(array, value_name='value')

	Create a data frame with row and column locations for every value in the 2D array
:param array: a Numpy array
:param value_name: a string with the column name for the array values to be output in

	Returns:

	a pandas data frame of row, column, value where each value is the value of np array at row, column

	Parameters:

	
	array (numpy.ndarray) –

	value_name (str) –

	Return type:

	pandas.DataFrame

filters module

	
pool2d(A, kernel_size, stride, padding, pool_mode='max')

	2D Pooling
Taken from https://stackoverflow.com/questions/54962004/implement-max-mean-poolingwith-stride-with-numpy
:param A: input 2D array
:param kernel_size: int, the size of the window
:param stride: int, the stride of the window
:param padding: int, implicit zero paddings on both sides of the input
:param pool_mode: string, ‘max’ or ‘avg’

geometry module

	
class Address(row, col)

	Bases: tuple

a row and column point

	Parameters:

	
	row (int) –

	col (int) –

	
property col

	Alias for field number 1

	
property row

	Alias for field number 0

	
class Point(x, y)

	Bases: tuple

an x y point in integers

	Parameters:

	
	x (int) –

	y (int) –

	
property x

	Alias for field number 0

	
property y

	Alias for field number 1

	
class PointF(x, y)

	Bases: tuple

an x y point in floating numbers

	Parameters:

	
	x (float) –

	y (float) –

	
property x

	Alias for field number 0

	
property y

	Alias for field number 1

	
class Shape(num_rows, num_cols)

	Bases: tuple

chape given by rows and columns

	Parameters:

	
	num_rows (int) –

	num_cols (int) –

	
as_size()

	

	
property num_cols

	Alias for field number 1

	
property num_rows

	Alias for field number 0

	
class Size(width, height)

	Bases: tuple

size given by width and height

	Parameters:

	
	width (int) –

	height (int) –

	
as_shape()

	

	
property height

	Alias for field number 1

	
property width

	Alias for field number 0

Other information

Contents:

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	Development Lead

	Contributors

	History
	0.1.0 (2022-09-08)

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/StAndrewsMedTech/wsipipe/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

wsipipe could always use more documentation, whether as part of the
official wsipipe docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/StAndrewsMedTech/wsipipe/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up wsipipe for local development.

	Fork the wsipipe repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/wsipipe.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv wsipipe
$ cd wsipipe/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 wsipipe tests
$ python setup.py test or pytest
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 3.5, 3.6, 3.7 and 3.8, and for PyPy. Check
https://travis-ci.com/StAndrewsMedTech/wsipipe/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_wsipipe

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bump2version patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

Development Lead

	Christina Fell <cmf21@st-andrews.ac.uk>

	David Morrison <dm236@st-andrews.ac.uk>

Contributors

None yet. Why not be the first?

History

0.1.0 (2022-09-08)

	First release on PyPI.

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 wsipipe	

 	
 	
 wsipipe.datasets	

 	
 	
 wsipipe.datasets.camelyon16	

 	
 	
 wsipipe.datasets.dataset_utils	

 	
 	
 wsipipe.datasets.stripai	

 	
 	
 wsipipe.load	

 	
 	
 wsipipe.load.annotations	

 	
 	
 wsipipe.load.annotations.annotation	

 	
 	
 wsipipe.load.annotations.asapxml	

 	
 	
 wsipipe.load.slides.openslide	

 	
 	
 wsipipe.load.slides.region	

 	
 	
 wsipipe.load.slides.slide	

 	
 	
 wsipipe.preprocess	

 	
 	
 wsipipe.preprocess.patching.patch_finder	

 	
 	
 wsipipe.preprocess.tissue_detection.filters	

 	
 	
 wsipipe.preprocess.tissue_detection.morphology_transforms	

 	
 	
 wsipipe.preprocess.tissue_detection.tissue_detector	

 	
 	
 wsipipe.utils	

 	
 	
 wsipipe.utils.convert	

 	
 	
 wsipipe.utils.filters	

 	
 	
 wsipipe.utils.geometry	

Index

 A
 | C
 | D
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W
 | X
 | Y

A

 	
 	Address (class in wsipipe.utils.geometry)

 	Annotation (class in wsipipe.load.annotations.annotation)

 	annotation_from_tag() (in module wsipipe.load.annotations.asapxml)

 	
 	AnnotationSet (class in wsipipe.load.annotations.annotation)

 	as_shape() (Size method)

 	as_size() (Shape method)

 	as_values() (Region method)

C

 	
 	check_level() (OSSlide method)

 	close() (OSSlide method)

 	(SlideBase method), [1]

 	
 	col (Address property)

 	convert_region() (OSSlide method)

 	convert_to_pyramids() (in module wsipipe.datasets.stripai)

D

 	
 	dimensions (OSSlide property)

 	(SlideBase property)

 	
 	dimensions() (SlideBase method)

 	draw() (Annotation method)

F

 	
 	FillHolesTransform (class in wsipipe.preprocess.tissue_detection.morphology_transforms)

G

 	
 	GaussianBlur (class in wsipipe.preprocess.tissue_detection.filters)

 	
 	get_thumbnail() (SlideBase method), [1]

 	GridPatchFinder (class in wsipipe.preprocess.patching.patch_finder)

H

 	
 	height (Size property)

I

 	
 	invert() (in module wsipipe.utils.convert)

L

 	
 	labels_level (PatchFinder property)

 	labels_level() (GridPatchFinder method)

 	(RandomPatchFinder method)

 	
 	level (Region property)

 	load_annotations_asapxml() (in module wsipipe.load.annotations.asapxml)

 	location (Region property)

M

 	
 	make() (Region class method)

 	MaxPoolTransform (class in wsipipe.preprocess.tissue_detection.morphology_transforms)

 	MedianBlur (class in wsipipe.preprocess.tissue_detection.filters)

 	
 module

 	wsipipe.datasets

 	wsipipe.datasets.camelyon16

 	wsipipe.datasets.dataset_utils

 	wsipipe.datasets.stripai

 	wsipipe.load

 	wsipipe.load.annotations

 	wsipipe.load.annotations.annotation

 	wsipipe.load.annotations.asapxml

 	wsipipe.load.slides.openslide

 	wsipipe.load.slides.region

 	wsipipe.load.slides.slide

 	wsipipe.preprocess

 	wsipipe.preprocess.patching.patch_finder

 	wsipipe.preprocess.tissue_detection.filters

 	wsipipe.preprocess.tissue_detection.morphology_transforms

 	wsipipe.preprocess.tissue_detection.tissue_detector

 	wsipipe.utils

 	wsipipe.utils.convert

 	wsipipe.utils.filters

 	wsipipe.utils.geometry

 	
 	MorphologyTransform (class in wsipipe.preprocess.tissue_detection.morphology_transforms)

N

 	
 	np_to_pil() (in module wsipipe.utils.convert)

 	NullBlur (class in wsipipe.preprocess.tissue_detection.filters)

 	
 	NullTransform (class in wsipipe.preprocess.tissue_detection.morphology_transforms)

 	num_cols (Shape property)

 	num_rows (Shape property)

O

 	
 	open() (OSSlide method)

 	(SlideBase method), [1]

 	
 	OSSlide (class in wsipipe.load.slides.openslide)

P

 	
 	PatchFinder (class in wsipipe.preprocess.patching.patch_finder)

 	path (OSSlide property)

 	(SlideBase property)

 	path() (SlideBase method)

 	
 	pil_to_np() (in module wsipipe.utils.convert)

 	Point (class in wsipipe.utils.geometry)

 	PointF (class in wsipipe.utils.geometry)

 	pool2d() (in module wsipipe.utils.filters)

 	PreFilter (class in wsipipe.preprocess.tissue_detection.filters)

R

 	
 	RandomPatchFinder (class in wsipipe.preprocess.patching.patch_finder)

 	read_region() (OSSlide method)

 	(SlideBase method), [1]

 	read_regions() (OSSlide method)

 	(SlideBase method), [1]

 	
 	Region (class in wsipipe.load.slides.region)

 	remove_item_from_dict() (in module wsipipe.utils.convert)

 	render() (AnnotationSet method)

 	row (Address property)

S

 	
 	sample_dataset() (in module wsipipe.datasets.dataset_utils)

 	Shape (class in wsipipe.utils.geometry)

 	SimpleClosingTransform (class in wsipipe.preprocess.tissue_detection.morphology_transforms)

 	SimpleOpeningTransform (class in wsipipe.preprocess.tissue_detection.morphology_transforms)

 	
 	Size (class in wsipipe.utils.geometry)

 	size (Region property)

 	SizedClosingTransform (class in wsipipe.preprocess.tissue_detection.morphology_transforms)

 	SlideBase (class in wsipipe.load.slides.slide)

T

 	
 	testing() (in module wsipipe.datasets.camelyon16)

 	TissueDetector (class in wsipipe.preprocess.tissue_detection.tissue_detector)

 	TissueDetectorAll (class in wsipipe.preprocess.tissue_detection.tissue_detector)

 	TissueDetectorGreyScale (class in wsipipe.preprocess.tissue_detection.tissue_detector)

 	
 	TissueDetectorOTSU (class in wsipipe.preprocess.tissue_detection.tissue_detector)

 	to_frame_with_locations() (in module wsipipe.utils.convert)

 	training() (in module wsipipe.datasets.camelyon16)

 	(in module wsipipe.datasets.stripai)

V

 	
 	visualise_annotations() (in module wsipipe.load.annotations.annotation)

W

 	
 	width (Size property)

 	
 wsipipe.datasets

 	module

 	
 wsipipe.datasets.camelyon16

 	module

 	
 wsipipe.datasets.dataset_utils

 	module

 	
 wsipipe.datasets.stripai

 	module

 	
 wsipipe.load

 	module

 	
 wsipipe.load.annotations

 	module

 	
 wsipipe.load.annotations.annotation

 	module

 	
 wsipipe.load.annotations.asapxml

 	module

 	
 wsipipe.load.slides.openslide

 	module

 	
 wsipipe.load.slides.region

 	module

 	
 	
 wsipipe.load.slides.slide

 	module

 	
 wsipipe.preprocess

 	module

 	
 wsipipe.preprocess.patching.patch_finder

 	module

 	
 wsipipe.preprocess.tissue_detection.filters

 	module

 	
 wsipipe.preprocess.tissue_detection.morphology_transforms

 	module

 	
 wsipipe.preprocess.tissue_detection.tissue_detector

 	module

 	
 wsipipe.utils

 	module

 	
 wsipipe.utils.convert

 	module

 	
 wsipipe.utils.filters

 	module

 	
 wsipipe.utils.geometry

 	module

X

 	
 	x (Point property)

 	(PointF property)

Y

 	
 	y (Point property)

 	(PointF property)

 _static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to wsipipe’s documentation!

 		
 Getting started

 		
 wsipipe

 		
 Features

 		
 Credits

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Openslide

 		
 Usage

 		
 Tutorial

 		
 Specifying slide and annotation information

 		
 Specifying how to load a dataset

 		
 Viewing a slide

 		
 Viewing an annotation

 		
 Applying background subtraction

 		
 Creating a patchset for a slide

 		
 Creating patchsets for a dataset

 		
 Saving and loading patchsets

 		
 Combining patchsets

 		
 Sampling patchsets

 		
 Creating patches

 		
 wsipipe

 		
 wsipipe package

 		
 wsipipe.datasets package

 		
 wsipipe.load package

 		
 wsipipe.preprocess package

 		
 wsipipe.utils package

 		
 Other information

 		
 Contributing

 		
 Types of Contributions

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.1.0 (2022-09-08)

